{ "cells": [ { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "\n", "\n", "

Classification with Python

" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "In this notebook we try to practice all the classification algorithms that we learned in this course.\n", "\n", "We load a dataset using Pandas library, and apply the following algorithms, and find the best one for this specific dataset by accuracy evaluation methods.\n", "\n", "Lets first load required libraries:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [], "source": [ "import itertools\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib.ticker import NullFormatter\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.ticker as ticker\n", "from sklearn import preprocessing\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "### About dataset" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "This dataset is about past loans. The __Loan_train.csv__ data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:\n", "\n", "| Field | Description |\n", "|----------------|---------------------------------------------------------------------------------------|\n", "| Loan_status | Whether a loan is paid off on in collection |\n", "| Principal | Basic principal loan amount at the |\n", "| Terms | Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule |\n", "| Effective_date | When the loan got originated and took effects |\n", "| Due_date | Since it’s one-time payoff schedule, each loan has one single due date |\n", "| Age | Age of applicant |\n", "| Education | Education of applicant |\n", "| Gender | The gender of applicant |" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Lets download the dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--2018-06-12 16:14:42-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv\n", "Resolving s3-api.us-geo.objectstorage.softlayer.net... 67.228.254.193\n", "Connecting to s3-api.us-geo.objectstorage.softlayer.net|67.228.254.193|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 23101 (23K) [text/csv]\n", "Saving to: ‘loan_train.csv’\n", "\n", "loan_train.csv 100%[===================>] 22.56K --.-KB/s in 0.03s \n", "\n", "2018-06-12 16:14:43 (889 KB/s) - ‘loan_train.csv’ saved [23101/23101]\n", "\n" ] } ], "source": [ "!wget -O loan_train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "### Load Data From CSV File " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0Unnamed: 0.1loan_statusPrincipaltermseffective_datedue_dateageeducationGender
000PAIDOFF1000309/8/201610/7/201645High School or Belowmale
122PAIDOFF1000309/8/201610/7/201633Bechalorfemale
233PAIDOFF1000159/8/20169/22/201627collegemale
344PAIDOFF1000309/9/201610/8/201628collegefemale
466PAIDOFF1000309/9/201610/8/201629collegemale
\n", "
" ], "text/plain": [ " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n", "0 0 0 PAIDOFF 1000 30 9/8/2016 \n", "1 2 2 PAIDOFF 1000 30 9/8/2016 \n", "2 3 3 PAIDOFF 1000 15 9/8/2016 \n", "3 4 4 PAIDOFF 1000 30 9/9/2016 \n", "4 6 6 PAIDOFF 1000 30 9/9/2016 \n", "\n", " due_date age education Gender \n", "0 10/7/2016 45 High School or Below male \n", "1 10/7/2016 33 Bechalor female \n", "2 9/22/2016 27 college male \n", "3 10/8/2016 28 college female \n", "4 10/8/2016 29 college male " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv('loan_train.csv')\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(346, 10)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "### Convert to date time object " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0Unnamed: 0.1loan_statusPrincipaltermseffective_datedue_dateageeducationGender
000PAIDOFF1000302016-09-082016-10-0745High School or Belowmale
122PAIDOFF1000302016-09-082016-10-0733Bechalorfemale
233PAIDOFF1000152016-09-082016-09-2227collegemale
344PAIDOFF1000302016-09-092016-10-0828collegefemale
466PAIDOFF1000302016-09-092016-10-0829collegemale
\n", "
" ], "text/plain": [ " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n", "0 0 0 PAIDOFF 1000 30 2016-09-08 \n", "1 2 2 PAIDOFF 1000 30 2016-09-08 \n", "2 3 3 PAIDOFF 1000 15 2016-09-08 \n", "3 4 4 PAIDOFF 1000 30 2016-09-09 \n", "4 6 6 PAIDOFF 1000 30 2016-09-09 \n", "\n", " due_date age education Gender \n", "0 2016-10-07 45 High School or Below male \n", "1 2016-10-07 33 Bechalor female \n", "2 2016-09-22 27 college male \n", "3 2016-10-08 28 college female \n", "4 2016-10-08 29 college male " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['due_date'] = pd.to_datetime(df['due_date'])\n", "df['effective_date'] = pd.to_datetime(df['effective_date'])\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "# Data visualization and pre-processing\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Let’s see how many of each class is in our data set " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/plain": [ "PAIDOFF 260\n", "COLLECTION 86\n", "Name: loan_status, dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['loan_status'].value_counts()" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "260 people have paid off the loan on time while 86 have gone into collection \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lets plot some columns to underestand data better:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Solving environment: done\n", "\n", "## Package Plan ##\n", "\n", " environment location: /Users/Saeed/anaconda/envs/python3.6\n", "\n", " added / updated specs: \n", " - seaborn\n", "\n", "\n", "The following packages will be downloaded:\n", "\n", " package | build\n", " ---------------------------|-----------------\n", " openssl-1.0.2o | h26aff7b_0 3.4 MB anaconda\n", " ca-certificates-2018.03.07 | 0 124 KB anaconda\n", " ------------------------------------------------------------\n", " Total: 3.5 MB\n", "\n", "The following packages will be UPDATED:\n", "\n", " ca-certificates: 2018.03.07-0 --> 2018.03.07-0 anaconda\n", " openssl: 1.0.2o-h26aff7b_0 --> 1.0.2o-h26aff7b_0 anaconda\n", "\n", "\n", "Downloading and Extracting Packages\n", "openssl-1.0.2o | 3.4 MB | ####################################### | 100% \n", "ca-certificates-2018 | 124 KB | ####################################### | 100% \n", "Preparing transaction: done\n", "Verifying transaction: done\n", "Executing transaction: done\n" ] } ], "source": [ "# notice: installing seaborn might takes a few minutes\n", "!conda install -c anaconda seaborn -y" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAG4xJREFUeJzt3XucFOWd7/HPV5wVFaIioyKIMyKKqGTAWY3XJbCyqPF2jAbjUdx4DtFoXDbxeMt5aTa+1nghMclRibhyyCaKGrKgSxINUTmKiRfAEcELITrqKCAQN8YgBPB3/qiaSYM9zKV7pmu6v+/Xq15T9VTVU7+umWd+XU9XP6WIwMzMLGt2KHUAZmZm+ThBmZlZJjlBmZlZJjlBmZlZJjlBmZlZJjlBmZlZJjlBdRFJe0u6T9LrkhZJ+q2kM4tU92hJc4tRV3eQNF9SfanjsNIop7YgqVrSs5JekHR8Fx7nw66quydxguoCkgTMAZ6MiAMi4ghgAjCoRPHsWIrjmpVhWxgLvBoRIyPiqWLEZK1zguoaY4C/RMQPmwsi4s2I+D8AknpJulXS85KWSPpyWj46vdqYJelVSfemDRxJ49OyBcB/a65X0q6Spqd1vSDp9LT8Qkk/lfSfwK8KeTGSZkiaKumJ9F3w36XHfEXSjJztpkpaKGmZpH9ppa5x6TvoxWl8fQqJzTKvbNqCpDrgFuBkSQ2Sdm7t71lSo6Qb03ULJY2S9Kik30u6ON2mj6TH0n1fao43z3H/V875yduuylZEeCryBFwO3Lad9ZOA/53O7wQsBGqB0cAfSd5d7gD8FjgO6A28DQwFBDwIzE33vxH47+n87sByYFfgQqAJ6NdKDE8BDXmmv8+z7Qzg/vTYpwMfAIenMS4C6tLt+qU/ewHzgRHp8nygHugPPAnsmpZfBVxX6t+Xp66byrAtXAjcns63+vcMNAKXpPO3AUuAvkA18F5aviPwqZy6VgBKlz9Mf44DpqWvdQdgLnBCqX+v3TW566cbSLqDpHH9JSL+luSPboSkz6eb7EbS4P4CPBcRTel+DUAN8CHwRkT8Li3/CUnDJq3rNElXpMu9gcHp/LyI+EO+mCKio/3n/xkRIeklYHVEvJTGsiyNsQE4R9IkkoY3ABhO0jCbfSYtezp9M/w3JP94rEKUSVto1tbf88Ppz5eAPhHxJ+BPkjZI2h34M3CjpBOAj4GBwN7Aqpw6xqXTC+lyH5Lz82QnY+5RnKC6xjLgrOaFiLhUUn+Sd4eQvBv6akQ8mruTpNHAxpyiLfz1d9TaoIkCzoqI17ap6yiSBpB/J+kpknd027oiIn6dp7w5ro+3ifFjYEdJtcAVwN9GxPtp11/vPLHOi4hzW4vLyk45toXc423v73m7bQY4j+SK6oiI2CSpkfxt5tsRcdd24ihb/gyqazwO9JZ0SU7ZLjnzjwKXSKoCkHSQpF23U9+rQK2kIelyboN4FPhqTv/8yPYEGBHHR0Rdnml7DXJ7PkXyT+CPkvYGTsqzzTPAsZIOTGPdRdJBnTye9Qzl3BYK/XvejaS7b5OkzwL759nmUeBLOZ9tDZS0VweO0aM5QXWBSDqPzwD+TtIbkp4DfkTSRw3wb8DLwGJJS4G72M7VbERsIOnG+Hn6wfCbOatvAKqAJWldNxT79bRHRLxI0g2xDJgOPJ1nmzUkffgzJS0haeDDujFM62bl3BaK8Pd8L1AvaSHJ1dSreY7xK+A+4Ldp9/os8l/tlaXmD+TMzMwyxVdQZmaWSU5QZmaWSU5QZmaWSU5QZmaWSZlIUOPHjw+S7zZ48lQuU9G4fXgqs6ndMpGg1q5dW+oQzDLL7cMqVSYSlJmZ2bacoMzMLJOcoMzMLJM8WKyZlZVNmzbR1NTEhg0bSh1KRevduzeDBg2iqqqq03U4QZlZWWlqaqJv377U1NSQjhtr3SwiWLduHU1NTdTW1na6HnfxmVlZ2bBhA3vuuaeTUwlJYs899yz4KtYJyirG/gMGIKko0/4DBpT65dh2ODmVXjF+B+7is4rx1qpVNO07qCh1DXq3qSj1mFnrfAVlZmWtmFfO7b167tWrF3V1dRx22GGcffbZrF+/vmXd7NmzkcSrr/718U+NjY0cdthhAMyfP5/ddtuNkSNHcvDBB3PCCScwd+7creqfNm0aw4YNY9iwYRx55JEsWLCgZd3o0aM5+OCDqauro66ujlmzZm0VU/PU2NhYyGntFr6CMrOyVswrZ2jf1fPOO+9MQ0MDAOeddx4//OEP+drXvgbAzJkzOe6447j//vv55je/mXf/448/viUpNTQ0cMYZZ7DzzjszduxY5s6dy1133cWCBQvo378/ixcv5owzzuC5555jn332AeDee++lvr6+1Zh6ijavoCRNl/Re+oTK5rJvSnpHUkM6nZyz7hpJKyS9JukfuipwM7Oe4Pjjj2fFihUAfPjhhzz99NPcc8893H///e3av66ujuuuu47bb78dgJtvvplbb72V/v37AzBq1CgmTpzIHXfc0TUvoITa08U3Axifp/y2iKhLp18ASBoOTAAOTfe5U1KvYgVrZtaTbN68mV/+8pccfvjhAMyZM4fx48dz0EEH0a9fPxYvXtyuekaNGtXSJbhs2TKOOOKIrdbX19ezbNmyluXzzjuvpStv3bp1AHz00UctZWeeeWYxXl6Xa7OLLyKelFTTzvpOB+6PiI3AG5JWAEcCv+10hGZmPUxzMoDkCuqiiy4Cku69yZMnAzBhwgRmzpzJqFGj2qwvYvuDgEfEVnfNlUsXXyGfQV0m6QJgIfD1iHgfGAg8k7NNU1r2CZImAZMABg8eXEAYZuXH7aNny5cM1q1bx+OPP87SpUuRxJYtW5DELbfc0mZ9L7zwAocccggAw4cPZ9GiRYwZM6Zl/eLFixk+fHhxX0QGdPYuvqnAEKAOWAl8Jy3Pd+N73tQfEdMioj4i6qurqzsZhll5cvsoP7NmzeKCCy7gzTffpLGxkbfffpva2tqt7sDLZ8mSJdxwww1ceumlAFx55ZVcddVVLV13DQ0NzJgxg6985Std/hq6W6euoCJidfO8pLuB5nsgm4D9cjYdBLzb6ejMzAo0eJ99ivq9tcHpnXIdNXPmTK6++uqtys466yzuu+8+rrrqqq3Kn3rqKUaOHMn69evZa6+9+MEPfsDYsWMBOO2003jnnXc45phjkETfvn35yU9+woAy/PK42urbBEg/g5obEYelywMiYmU6/8/AURExQdKhwH0knzvtCzwGDI2ILdurv76+PhYuXFjI6zBrk6SiflG3jbZTtKEM3D465pVXXmnpDrPSauV30e620eYVlKSZwGigv6Qm4HpgtKQ6ku67RuDLABGxTNKDwMvAZuDStpKTmZlZPu25i+/cPMX3bGf7fwX+tZCgzMzMPNSRmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZW1fQcNLurjNvYd1L6RPVatWsWECRMYMmQIw4cP5+STT2b58uUsW7aMMWPGcNBBBzF06FBuuOGGlq8szJgxg8suu+wTddXU1LB27dqtymbMmEF1dfVWj9B4+eWXAVi+fDknn3wyBx54IIcccgjnnHMODzzwQMt2ffr0aXkkxwUXXMD8+fP53Oc+11L3nDlzGDFiBMOGDePwww9nzpw5LesuvPBCBg4cyMaNGwFYu3YtNTU1HfqdtJcft2FmZW3lO29z1HWPFK2+Z7+Vb+zsrUUEZ555JhMnTmwZtbyhoYHVq1dz4YUXMnXqVMaNG8f69es566yzuPPOO1tGiuiIL3zhCy2jnDfbsGEDp5xyCt/97nc59dRTAXjiiSeorq5uGX5p9OjRTJkypWW8vvnz57fs/+KLL3LFFVcwb948amtreeONNzjxxBM54IADGDFiBJA8W2r69OlccsklHY65I3wFZWZWZE888QRVVVVcfPHFLWV1dXUsX76cY489lnHjxgGwyy67cPvtt3PTTTcV7dj33XcfRx99dEtyAvjsZz/b8kDEtkyZMoVrr72W2tpaAGpra7nmmmu49dZbW7aZPHkyt912G5s3by5a3Pk4QZmZFdnSpUs/8UgMyP+ojCFDhvDhhx/ywQcfdPg4ud12dXV1fPTRR60eu73a8ziPwYMHc9xxx/HjH/+408dpD3fxmZl1k20fi5GrtfLtydfFV6h8MeYru/baaznttNM45ZRTinr8XL6CMjMrskMPPZRFixblLd92XMXXX3+dPn360Ldv3y49dkf23zbGfI/zOPDAA6mrq+PBBx/s9LHa4gRlZlZkY8aMYePGjdx9990tZc8//zxDhw5lwYIF/PrXvwaSBxtefvnlXHnllUU79he/+EV+85vf8POf/7yl7JFHHuGll15q1/5XXHEF3/72t2lsbASgsbGRG2+8ka9//euf2PYb3/gGU6ZMKUrc+biLz8zK2oCB+7XrzruO1NcWScyePZvJkydz00030bt3b2pqavje977HQw89xFe/+lUuvfRStmzZwvnnn7/VreUzZszY6rbuZ55JngE7YsQIdtghuaY455xzGDFiBA888MBWz5O68847OeaYY5g7dy6TJ09m8uTJVFVVMWLECL7//e+36/XV1dVx8803c+qpp7Jp0yaqqqq45ZZbWp4QnOvQQw9l1KhR7X50fUe163EbXc2PE7Du4MdtVAY/biM7Cn3cRptdfJKmS3pP0tKcslslvSppiaTZknZPy2skfSSpIZ1+2N5AzMzMcrXnM6gZwLbXx/OAwyJiBLAcuCZn3e8joi6dLsbMzKwT2kxQEfEk8Idtyn4VEc3f0HqG5NHuZmaZkIWPLipdMX4HxbiL70vAL3OWayW9IOn/STq+tZ0kTZK0UNLCNWvWFCEMs/Lh9tF5vXv3Zt26dU5SJRQRrFu3jt69exdUT0F38Un6Bsmj3e9Ni1YCgyNinaQjgDmSDo2IT3xFOiKmAdMg+RC4kDjMyo3bR+cNGjSIpqYmnNhLq3fv3gwaVFjnWqcTlKSJwOeAsZG+VYmIjcDGdH6RpN8DBwG+BcnMukVVVVXLOHLWs3Wqi0/SeOAq4LSIWJ9TXi2pVzp/ADAUeL0YgZqZWWVp8wpK0kxgNNBfUhNwPcldezsB89LxmZ5J79g7AfiWpM3AFuDiiPhD3orNzMy2o80EFRHn5im+p5Vtfwb8rNCgzMzMPBafmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllkhOUmZllUrsSlKTpkt6TtDSnrJ+keZJ+l/7cIy2XpB9IWiFpiaRRXRW8mZmVr/ZeQc0Axm9TdjXwWEQMBR5LlwFOInmS7lBgEjC18DDNzKzStCtBRcSTwLZPxj0d+FE6/yPgjJzyf4/EM8DukgYUI1gzM6schXwGtXdErARIf+6Vlg8E3s7Zrikt24qkSZIWSlq4Zs2aAsIwKz9uH2Zdc5OE8pTFJwoipkVEfUTUV1dXd0EYZj2X24dZYQlqdXPXXfrzvbS8CdgvZ7tBwLsFHMfMzCpQIQnqYWBiOj8ReCin/IL0br7PAH9s7go0MzNrrx3bs5GkmcBooL+kJuB64CbgQUkXAW8BZ6eb/wI4GVgBrAf+scgxm5lZBWhXgoqIc1tZNTbPtgFcWkhQZmZmHknCzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyyQnKzMwyqV2jmecj6WDggZyiA4DrgN2B/wk0P6f62oj4RacjNDOzitTpBBURrwF1AJJ6Ae8As0me/3RbREwpSoRmZlaRitXFNxb4fUS8WaT6zMyswhUrQU0AZuYsXyZpiaTpkvbIt4OkSZIWSlq4Zs2afJuYVSy3D7MiJChJfwOcBvw0LZoKDCHp/lsJfCfffhExLSLqI6K+urq60DDMyorbh1lxrqBOAhZHxGqAiFgdEVsi4mPgbuDIIhzDzMwqTDES1LnkdO9JGpCz7kxgaRGOYWZmFabTd/EBSNoFOBH4ck7xLZLqgAAat1lnZmbWLgUlqIhYD+y5Tdn5BUVkZmaGR5IwM7OMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMKug2c7OeRL2qGPRuU9HqMrOu5QRlFSO2bOKo6x4pSl3Pfmt8Ueoxs9a5i8/MzDLJCcrMzDLJCcrMzDLJCcrMzDLJCcrMzDLJCcrMzDKp4NvMJTUCfwK2AJsjol5SP+ABoIbkmVDnRMT7hR7LzMwqR7GuoD4bEXURUZ8uXw08FhFDgcfSZasw+w8YgKSCp/0HDGj7YGZWdrrqi7qnA6PT+R8B84GruuhYllFvrVpF076DCq6nWKM/mFnPUowrqAB+JWmRpElp2d4RsRIg/bnXtjtJmiRpoaSFa9asKUIYZuXD7cOsOAnq2IgYBZwEXCrphPbsFBHTIqI+Iuqrq6uLEIZZ+XD7MCtCgoqId9Of7wGzgSOB1ZIGAKQ/3yv0OGZmVlkKSlCSdpXUt3keGAcsBR4GJqabTQQeKuQ4ZmZWeQq9SWJvYLak5rrui4hHJD0PPCjpIuAt4OwCj2NmZhWmoAQVEa8Dn85Tvg4YW0jdZmZW2TyShJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZZITlJmZZfIJ2F31RF0zM+tBsvgEbF9BmZlZJnU6QUnaT9ITkl6RtEzSP6Xl35T0jqSGdDq5eOGamVmlKKSLbzPw9YhYnD60cJGkeem62yJiSuHhmZlZpep0goqIlcDKdP5Pkl4BBhYrMDMzq2xF+QxKUg0wEng2LbpM0hJJ0yXt0co+kyQtlLRwzZo1xQjDrGy4fZgVIUFJ6gP8DJgcER8AU4EhQB3JFdZ38u0XEdMioj4i6qurqwsNw6ysuH2YFZigJFWRJKd7I+I/ACJidURsiYiPgbuBIwsP08zMKk0hd/EJuAd4JSK+m1Oe+y2tM4GlnQ/PzMwqVSF38R0LnA+8JKkhLbsWOFdSHRBAI/DlgiI0M7OKVMhdfAsA5Vn1i86HY2ZmlvBIEmZmlkkei8+6jHpVFWVcLvWqKkI0ZtbTOEFZl4ktmzjqukcKrufZb40vQjRm1tO4i8/MzDLJCcrMzDLJCcrMzDLJCcrMzDLJCcrMrJtl8fHqWeS7+MzMulkWH6+eRb6CMjOzTHKCMjOzTHIXn5mZZXLkFycoMzPL5Mgv7uIzM7NM6rIEJWm8pNckrZB0daH1+bZMM7PK0iVdfJJ6AXcAJwJNwPOSHo6Ilztbp2/LNDOrLF31GdSRwIqIeB1A0v3A6UCnE1TW7D9gAG+tWlVwPYP32Yc3V64sQkTlTcr3bEzLIreNthXrhoQdelWVddtQRBS/UunzwPiI+B/p8vnAURFxWc42k4BJ6eLBwGtFD6T9+gNrS3j8Qjj20mgr9rUR0elPizPUPsr5d5Rl5Rx7u9tGV11B5UvpW2XCiJgGTOui43eIpIURUV/qODrDsZdGV8eelfbh31FpOPZEV90k0QTsl7M8CHi3i45lZmZlqKsS1PPAUEm1kv4GmAA83EXHMjOzMtQlXXwRsVnSZcCjQC9gekQs64pjFUnJu1IK4NhLoyfH3hE9+XU69tIoWuxdcpOEmZlZoTyShJmZZZITlJmZZVLFJChJvSS9IGluulwr6VlJv5P0QHozB5J2SpdXpOtrShz37pJmSXpV0iuSjpbUT9K8NPZ5kvZIt5WkH6SxL5E0qsSx/7OkZZKWSpopqXdWz7uk6ZLek7Q0p6zD51nSxHT730ma2J2vobPcNkoSu9tGO1RMggL+CXglZ/lm4LaIGAq8D1yUll8EvB8RBwK3pduV0veBRyJiGPBpktdwNfBYGvtj6TLAScDQdJoETO3+cBOSBgKXA/URcRjJzTITyO55nwFs++XBDp1nSf2A64GjSEZTub654Wac20Y3ctvoQNuIiLKfSL6H9RgwBphL8kXitcCO6fqjgUfT+UeBo9P5HdPtVKK4PwW8se3xSUYVGJDODwBeS+fvAs7Nt10JYh8IvA30S8/jXOAfsnzegRpgaWfPM3AucFdO+VbbZXFy23DbaGfMJWkblXIF9T3gSuDjdHlP4L8iYnO63ETyRwN//eMhXf/HdPtSOABYA/zftAvm3yTtCuwdESvTGFcCe6Xbt8Seyn1d3Soi3gGmAG8BK0nO4yJ6xnlv1tHznJnz3wFuG93MbWOr8u0q+wQl6XPAexGxKLc4z6bRjnXdbUdgFDA1IkYCf+avl9L5ZCb29PL9dKAW2BfYleTyf1tZPO9taS3WnvQa3DbcNrpCUdtG2Sco4FjgNEmNwP0kXRnfA3aX1PxF5dyhmFqGaUrX7wb8oTsDztEENEXEs+nyLJJGuVrSAID053s522dliKm/B96IiDURsQn4D+AYesZ5b9bR85yl898ebhul4bbRzvNf9gkqIq6JiEERUUPyQeTjEXEe8ATw+XSzicBD6fzD6TLp+scj7TTtbhGxCnhb0sFp0ViSR5bkxrht7Bekd9J8Bvhj82V4CbwFfEbSLpLEX2PP/HnP0dHz/CgwTtIe6bvkcWlZJrltuG0UoHvaRik+JCzVBIwG5qbzBwDPASuAnwI7peW90+UV6foDShxzHbAQWALMAfYg6X9+DPhd+rNfuq1IHhT5e+AlkruEShn7vwCvAkuBHwM7ZfW8AzNJPg/YRPJu76LOnGfgS+lrWAH8Y6n/5jvw+t02ujd2t412HNtDHZmZWSaVfRefmZn1TE5QZmaWSU5QZmaWSU5QZmaWSU5QZmaWSU5QGSZpi6SGdMTjn0rapZXtfiFp907Uv6+kWQXE1yipf2f3N+sst43K4NvMM0zShxHRJ52/F1gUEd/NWS+S3+HHrdXRxfE1knzPYW0pjm+Vy22jMvgKqud4CjhQUo2SZ9/cCSwG9mt+t5az7m4lz5r5laSdASQdKOnXkl6UtFjSkHT7pen6CyU9JOkRSa9Jur75wJLmSFqU1jmpJK/erHVuG2XKCaoHSMffOonkm9kABwP/HhEjI+LNbTYfCtwREYcC/wWclZbfm5Z/mmTcr3zDvBwJnEfyDf2zJdWn5V+KiCOAeuBySaUeSdkMcNsod05Q2bazpAaS4VzeAu5Jy9+MiGda2eeNiGhI5xcBNZL6AgMjYjZARGyIiPV59p0XEesi4iOSASyPS8svl/Qi8AzJgI9DC35lZoVx26gAO7a9iZXQRxFRl1uQdK3z5+3sszFnfguwM/mHus9n2w8kQ9JoktGXj46I9ZLmk4wNZlZKbhsVwFdQFSAiPgCaJJ0BIGmnVu56OlFSv7Rv/gzgaZKh/d9PG+Aw4DPdFrhZF3PbyDYnqMpxPkl3xBLgN8A+ebZZQDKycgPws4hYCDwC7JjudwNJV4ZZOXHbyCjfZm5AcqcSyW2xl5U6FrMscdsoHV9BmZlZJvkKyszMMslXUGZmlklOUGZmlklOUGZmlklOUGZmlklOUGZmlkn/H+LDZoiBEQ8dAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "\n", "bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)\n", "g = sns.FacetGrid(df, col=\"Gender\", hue=\"loan_status\", palette=\"Set1\", col_wrap=2)\n", "g.map(plt.hist, 'Principal', bins=bins, ec=\"k\")\n", "\n", "g.axes[-1].legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGfZJREFUeJzt3XuQVOW57/HvTxgdFbygo4yMwKgoopIBZ3tDDYJy2N49XuKOR7GOJx4Naqjo8ZZTVrLdZbyVmhwvkUQLK1HUmA26SUWDCidi4gVwRBBv0UFHQS7RKAchgs/5o9fMHqBhembWTK/u+X2qVnWvt1e/61lMvzy93vX2uxQRmJmZZc02xQ7AzMwsHycoMzPLJCcoMzPLJCcoMzPLJCcoMzPLJCcoMzPLJCeolEjaU9Ijkt6XNE/SXySdkVLdoyXNSKOu7iBptqT6YsdhxVdO7UJSlaSXJb0m6Zgu3M/qrqq71DhBpUCSgOnAnyJin4g4FDgXqClSPL2LsV+z1sqwXYwF3oqIERHxQhox2dY5QaVjDPCPiPhFc0FELImI/wMgqZek2yS9KmmBpP+ZlI9OzjaekPSWpIeTRo2k8UnZHOC/NtcraUdJDyZ1vSbptKT8Qkm/lfQfwB87czCSpki6T9Ks5Jvvt5N9LpY0pdV290maK2mRpJ9soa5xybfm+Ul8fToTm5WUsmkXkuqAW4ETJTVI2n5Ln21JjZJuSl6bK2mkpGck/VXSJck2fSQ9l7z3jeZ48+z3f7X698nbxspaRHjp5AJcAdy5ldcvBv538nw7YC5QC4wG/k7uG+U2wF+Ao4FK4CNgCCDgcWBG8v6bgP+WPN8FeAfYEbgQaAL6bSGGF4CGPMvxebadAjya7Ps04AvgkCTGeUBdsl2/5LEXMBsYnqzPBuqB3YE/ATsm5dcANxT77+Wle5YybBcXAncnz7f42QYagUuT53cCC4C+QBWwPCnvDezUqq73ACXrq5PHccDk5Fi3AWYAxxb779qdi7uCuoCke8g1qH9ExD+R+6ANl3RWssnO5BrZP4BXIqIpeV8DMBhYDXwQEe8m5b8h15hJ6jpV0lXJeiUwMHk+MyL+li+miGhvn/l/RERIegP4NCLeSGJZlMTYAJwj6WJyja0aGEauMTY7Iil7MfkCvC25/2ysByqTdtGsrc/2U8njG0CfiPgS+FLSWkm7AP8PuEnSscA3wABgT2BZqzrGJctryXofcv8+f+pgzCXHCSodi4Azm1ciYqKk3cl9I4TcN6DLI+KZ1m+SNBpY16poA//5N9nSJIkCzoyItzep63ByH/r8b5JeIPctblNXRcSzecqb4/pmkxi/AXpLqgWuAv4pIj5Luv4q88Q6MyL+ZUtxWVkrx3bRen9b+2xvtf0A55E7ozo0Ir6W1Ej+9vPTiLh/K3GUNV+DSsfzQKWkS1uV7dDq+TPApZIqACTtL2nHrdT3FlArad9kvXUjeAa4vFWf/IhCAoyIYyKiLs+ytUa4NTuRa/h/l7Qn8M95tnkJGCVpvyTWHSTt38H9Wekp53bR2c/2zuS6+76WdBwwKM82zwD/vdW1rQGS9mjHPkqeE1QKItdhfDrwbUkfSHoFeIhcvzTAr4A3gfmSFgL3s5Wz14hYS67r4vfJxeAlrV6+EagAFiR13Zj28RQiIl4n1/WwCHgQeDHPNivI9dtPlbSAXKMe2o1hWhGVc7tI4bP9MFAvaS65s6m38uzjj8AjwF+SrvYnyH+2V7aaL8qZmZllis+gzMwsk5ygzMwsk5ygzMwsk5ygzMwsk7o1QY0fPz7I/Y7Bi5dyXTrN7cRLD1gK0q0JauXKld25O7OS5HZiluMuPjMzyyQnKDMzyyQnKDMzyyRPFmtmZefrr7+mqamJtWvXFjuUHq2yspKamhoqKio69H4nKDMrO01NTfTt25fBgweTzB9r3SwiWLVqFU1NTdTW1naoDnfxmVnZWbt2LbvttpuTUxFJYrfdduvUWawTVDcaVF2NpFSWQdXVxT4cs0xzciq+zv4N3MXXjT5ctoymvWpSqavmk6ZU6jEzyyqfQZlZ2Uuz96LQHoxevXpRV1fHwQcfzNlnn82aNWtaXps2bRqSeOut/7wNVGNjIwcffDAAs2fPZuedd2bEiBEccMABHHvsscyYMWOj+idPnszQoUMZOnQohx12GHPmzGl5bfTo0RxwwAHU1dVRV1fHE088sVFMzUtjY2Nn/lm7nM+gzKzspdl7AYX1YGy//fY0NDQAcN555/GLX/yCH/7whwBMnTqVo48+mkcffZQf//jHed9/zDHHtCSlhoYGTj/9dLbffnvGjh3LjBkzuP/++5kzZw6777478+fP5/TTT+eVV16hf//+ADz88MPU19dvMaZS4DMoM7Mudswxx/Dee+8BsHr1al588UUeeOABHn300YLeX1dXxw033MDdd98NwC233MJtt93G7rvvDsDIkSOZMGEC99xzT9ccQJE4QZmZdaH169fzhz/8gUMOOQSA6dOnM378ePbff3/69evH/PnzC6pn5MiRLV2CixYt4tBDD93o9fr6ehYtWtSyft5557V05a1atQqAr776qqXsjDPOSOPwupS7+MzMukBzMoDcGdRFF10E5Lr3Jk2aBMC5557L1KlTGTlyZJv1RWx9EvCI2GjUXDl08RWUoCQ1Al8CG4D1EVEvqR/wGDAYaATOiYjPuiZMM7PSki8ZrFq1iueff56FCxciiQ0bNiCJW2+9tc36XnvtNQ488EAAhg0bxrx58xgzZkzL6/Pnz2fYsGHpHkSRtaeL77iIqIuI5pR8LfBcRAwBnkvWzcxsC5544gkuuOAClixZQmNjIx999BG1tbUbjcDLZ8GCBdx4441MnDgRgKuvvpprrrmmpeuuoaGBKVOm8P3vf7/Lj6E7daaL7zRgdPL8IWA2cE0n4zEzS93A/v1T/e3gwGSkXHtNnTqVa6/d+Lv8mWeeySOPPMI112z83+cLL7zAiBEjWLNmDXvssQc///nPGTt2LACnnnoqH3/8MUcddRSS6Nu3L7/5zW+oLrMf8Kutfk0ASR8An5G7E+L9ETFZ0ucRsUurbT6LiF3zvPdi4GKAgQMHHrpkyZLUgi81klL9oW4hfzvrdh366bzbSboWL17c0h1mxbWFv0VB7aTQLr5RETES+GdgoqRjCw0uIiZHRH1E1FdVVRX6NrMexe3EbHMFJaiI+CR5XA5MAw4DPpVUDZA8Lu+qIM3MrOdpM0FJ2lFS3+bnwDhgIfAUMCHZbALwZFcFaWZmPU8hgyT2BKYl4+t7A49ExNOSXgUel3QR8CFwdteFaWZmPU2bCSoi3ge+lad8FTC2K4IyMzPzVEdmZpZJTlBmVvb2qhmY6u029qoZWNB+ly1bxrnnnsu+++7LsGHDOPHEE3nnnXdYtGgRY8aMYf/992fIkCHceOONLT8bmTJlCpdddtlmdQ0ePJiVK1duVDZlyhSqqqo2uoXGm2++CcA777zDiSeeyH777ceBBx7IOeecw2OPPdayXZ8+fVpuyXHBBRcwe/ZsTj755Ja6p0+fzvDhwxk6dCiHHHII06dPb3ntwgsvZMCAAaxbtw6AlStXMnjw4Hb9TQrhufgKMKi6mg+XLSt2GGbWQUs//ojDb3g6tfpe/tfxbW4TEZxxxhlMmDChZdbyhoYGPv30Uy688ELuu+8+xo0bx5o1azjzzDO59957W2aKaI/vfOc7LbOcN1u7di0nnXQSd9xxB6eccgoAs2bNoqqqqmX6pdGjR3P77be3zNc3e/bslve//vrrXHXVVcycOZPa2lo++OADTjjhBPbZZx+GDx8O5O4t9eCDD3LppZe2O+ZCOUEVIK17yfguuGY9x6xZs6ioqOCSSy5pKaurq+OBBx5g1KhRjBs3DoAddtiBu+++m9GjR3coQeXzyCOPcOSRR7YkJ4Djjjuu4PfffvvtXH/99dTW1gJQW1vLddddx2233cavf/1rACZNmsSdd97J9773vVRizsddfGZmXWDhwoWb3RID8t8qY99992X16tV88cUX7d5P6267uro6vvrqqy3uu1CF3M5j4MCBHH300S0Jqyv4DMrMrBtteluM1rZUvjX5uvg6K1+M+cquv/56Tj31VE466aRU99/MZ1BmZl3goIMOYt68eXnL586du1HZ+++/T58+fejbt2+X7rs97980xny389hvv/2oq6vj8ccf7/C+tsYJysysC4wZM4Z169bxy1/+sqXs1VdfZciQIcyZM4dnn30WyN3Y8IorruDqq69Obd/f/e53+fOf/8zvf//7lrKnn36aN954o6D3X3XVVfz0pz+lsbERgMbGRm666SauvPLKzbb90Y9+xO23355K3JtyF5+Zlb3qAXsXNPKuPfW1RRLTpk1j0qRJ3HzzzVRWVjJ48GDuuusunnzySS6//HImTpzIhg0bOP/88zcaWj5lypSNhnW/9NJLAAwfPpxttsmdV5xzzjkMHz6cxx57bKP7Sd17770cddRRzJgxg0mTJjFp0iQqKioYPnw4P/vZzwo6vrq6Om655RZOOeUUvv76ayoqKrj11ltb7hDc2kEHHcTIkSMLvnV9exR0u4201NfXx6anjaUgrdtk1HzS5NttlL8O3W6jtVJtJ1ni221kR3fcbsPMzKxbOUGZmVkmOUGZWVlyF3jxdfZv4ARlZmWnsrKSVatWOUkVUUSwatUqKisrO1yHR/GZWdmpqamhqamJFStWFDuUHq2yspKamo4PDHOCKlHb0bFfneczsH9/lixdmkpdZllQUVHRMo+clS4nqBK1DlIdsm5mljUFX4OS1EvSa5JmJOu1kl6W9K6kxyRt23VhmplZT9OeQRI/ABa3Wr8FuDMihgCfARelGZiZmfVsBSUoSTXAScCvknUBY4Ankk0eAk7vigDNzKxnKvQM6i7gauCbZH034POIWJ+sNwED8r1R0sWS5kqa6xE1Zvm5nZhtrs0EJelkYHlEtJ67Pd/wsbw/OIiIyRFRHxH1VVVVHQzTrLy5nZhtrpBRfKOAUyWdCFQCO5E7o9pFUu/kLKoG+KTrwjQzs56mzTOoiLguImoiYjBwLvB8RJwHzALOSjabADzZZVGamVmP05mpjq4BfijpPXLXpB5IJyQzM7N2/lA3ImYDs5Pn7wOHpR+SmZmZJ4s1M7OMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMcoIyM7NMajNBSaqU9Iqk1yUtkvSTpLxW0suS3pX0mKRtuz5cMzPrKQo5g1oHjImIbwF1wHhJRwC3AHdGxBDgM+CirgvTzMx6mjYTVOSsTlYrkiWAMcATSflDwOldEqGZmfVIBV2DktRLUgOwHJgJ/BX4PCLWJ5s0AQO28N6LJc2VNHfFihVpxGxWdtxOzDZXUIKKiA0RUQfUAIcBB+bbbAvvnRwR9RFRX1VV1fFIzcqY24nZ5to1ii8iPgdmA0cAu0jqnbxUA3ySbmhmZtaTFTKKr0rSLsnz7YHjgcXALOCsZLMJwJNdFaSZmfU8vdvehGrgIUm9yCW0xyNihqQ3gUcl/RvwGvBAF8ZpZmY9TJsJKiIWACPylL9P7nqUmZlZ6jyThJmZZZITlJmZZZITlJmZZZITlJmZZVLZJqhB1dVISmUxM7PuV8gw85L04bJlNO1Vk0pdNZ80pVKPmZkVrmzPoMzMrLQ5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSY5QZmZWSa1maAk7S1plqTFkhZJ+kFS3k/STEnvJo+7dn24ZmbWUxRyBrUeuDIiDgSOACZKGgZcCzwXEUOA55J1MzOzVLSZoCJiaUTMT55/CSwGBgCnAQ8lmz0EnN5VQZqZWc/TrmtQkgYDI4CXgT0jYinkkhiwxxbec7GkuZLmrlixonPRmpUptxOzzRWcoCT1AX4HTIqILwp9X0RMjoj6iKivqqrqSIxmZc/txGxzBSUoSRXkktPDEfHvSfGnkqqT16uB5V0TopmZ9USFjOIT8ACwOCLuaPXSU8CE5PkE4Mn0w7PusB20edv7QpZB1dXFPhQzKyOF3PJ9FHA+8IakhqTseuBm4HFJFwEfAmd3TYjW1dYBTXvVdLqemk+aOh+MmVmizQQVEXMAbeHlsemGk03qVZHKf77qvW1q/4mrV0Uq9ZiZZVUhZ1A9Xmz4msNveLrT9bz8r+NTqae5LjOzcuapjszMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJOcoMzMLJPKdiaJtKYnMjOz4ijbBJXW9ETgaYXMzIrBXXxmZpZJTlBmZpZJTlBmZpZJZXsNqtylOQjE95ayrBlUXc2Hy5Z1up7tt+nFV99sSCEiGNi/P0uWLk2lLiuME1SJ8iAQK2cfLluW2l2e06inuS7rXm128Ul6UNJySQtblfWTNFPSu8njrl0bppmZ9TSFXIOaAmz6Ffta4LmIGAI8l6xbD7cdICmVZVB1dbEPx8yKrM0uvoj4k6TBmxSfBoxOnj8EzAauSTEuK0HrwN0pZpaajo7i2zMilgIkj3tsaUNJF0uaK2nuihUrOrg7s/JWDu1kUHV1amfQZtANgyQiYjIwGaC+vj66en9mpagc2klaAxvAZ9CW09EzqE8lVQMkj8vTC8nMzKzjCeopYELyfALwZDrhmJmZ5RQyzHwq8BfgAElNki4CbgZOkPQucEKybmZmlppCRvH9yxZeGptyLGZmZi0yNRefRwGZmVmzTE115FFAZmbWLFMJyoojrYlnPemsmaXJCcpSm3jWk86aWZoydQ3KzMysmROUmZllkhOUmZllkhOUmZllkhOUZZLvLdU9/NtDyzKP4rNM8r2luod/e2hZ5gRlqUnr91TNdZlZz+YEZalJ6/dU4N9UmZmvQZmZWUb5DMoyKc3uwm16VaRyEX9g//4sWbo0hYjKU6pdvL239fRbBRhUXc2Hy5alUlcWP99OUJZJaXcXpjEQwIMAti7tv5mn32pbuQ9ycRefmZllUqbOoNLsIjAzs9KWqQTlUWBmZtasUwlK0njgZ0Av4FcRcXMqUZmlqBzvd5XmxXErTFqDbQC26V3BN+u/TqWuctbhBCWpF3APcALQBLwq6amIeDOt4MzSUI73u0rr4ri71Av3jQfudLvODJI4DHgvIt6PiH8AjwKnpROWmZn1dIqIjr1ROgsYHxH/I1k/Hzg8Ii7bZLuLgYuT1QOAtzsebovdgZUp1JMFPpZs6uixrIyIdp9qdVE7Af9NsqqnH0tB7aQz16DydcZulu0iYjIwuRP72XzH0tyIqE+zzmLxsWRTdx9LV7QT8N8kq3wshelMF18TsHer9Rrgk86FY2ZmltOZBPUqMERSraRtgXOBp9IJy8zMeroOd/FFxHpJlwHPkBtm/mBELEotsq1LvSukiHws2VQux1IuxwE+lqzqsmPp8CAJMzOzruS5+MzMLJOcoMzMLJMyn6Ak7S1plqTFkhZJ+kFS3k/STEnvJo+7FjvWtkiqlPSKpNeTY/lJUl4r6eXkWB5LBp1knqRekl6TNCNZL8njAJDUKOkNSQ2S5iZlJfMZczvJtnJpK93dTjKfoID1wJURcSBwBDBR0jDgWuC5iBgCPJesZ906YExEfAuoA8ZLOgK4BbgzOZbPgIuKGGN7/ABY3Gq9VI+j2XERUdfqNx2l9BlzO8m2cmor3ddOIqKkFuBJcvP/vQ1UJ2XVwNvFjq2dx7EDMB84nNyvsHsn5UcCzxQ7vgLir0k+jGOAGeR+uF1yx9HqeBqB3TcpK9nPmNtJdpZyaivd3U5K4QyqhaTBwAjgZWDPiFgKkDzuUbzICpec6jcAy4GZwF+BzyNifbJJEzCgWPG1w13A1cA3yfpulOZxNAvgj5LmJdMOQel+xgbjdpIl5dRWurWdZOp+UFsjqQ/wO2BSRHyR1rT33S0iNgB1knYBpgEH5tuse6NqH0knA8sjYp6k0c3FeTbN9HFsYlREfCJpD2CmpLeKHVBHuJ1kSxm2lW5tJyWRoCRVkGt0D0fEvyfFn0qqjoilkqrJfdMqGRHxuaTZ5K4X7CKpd/KNqhSmjBoFnCrpRKAS2Inct8RSO44WEfFJ8rhc0jRys/WX1GfM7SSTyqqtdHc7yXwXn3JfAR8AFkfEHa1eegqYkDyfQK7PPdMkVSXfCJG0PXA8uQuns4Czks0yfywRcV1E1ETEYHJTXD0fEedRYsfRTNKOkvo2PwfGAQspoc+Y20k2lVNbKUo7KfZFtwIuyh1N7vR3AdCQLCeS68d9Dng3eexX7FgLOJbhwGvJsSwEbkjK9wFeAd4DfgtsV+xY23FMo4EZpXwcSdyvJ8si4EdJecl8xtxOsr+UelspRjvxVEdmZpZJme/iMzOznskJyszMMskJyszMMskJyszMMskJyszMMskJyszMMskJyszMMskJqsRJmp5M3LioefJGSRdJekfSbEm/lHR3Ul4l6XeSXk2WUcWN3qx7uJ2UJv9Qt8RJ6hcRf0umhHkV+C/Ai8BI4EvgeeD1iLhM0iPAvRExR9JAclP855uE06ysuJ2UppKYLNa26gpJZyTP9wbOB/5vRPwNQNJvgf2T148HhrWa4XonSX0j4svuDNisCNxOSpATVAlLpu8/HjgyItYksz6/Tf5bE0CuS/fIiPiqeyI0Kz63k9Lla1ClbWfgs6TRDSV3S4IdgG9L2lVSb+DMVtv/EbiseUVSXbdGa1YcbiclygmqtD0N9Ja0ALgReAn4GLiJ3N1UnwXeBP6ebH8FUC9pgaQ3gUu6P2Szbud2UqI8SKIMSeoTEauTb4bTgAcjYlqx4zLLEreT7PMZVHn6saQGcvfS+QCYXuR4zLLI7STjfAZlZmaZ5DMoMzPLJCcoMzPLJCcoMzPLJCcoMzPLJCcoMzPLpP8PlTlGZbaTvVAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bins = np.linspace(df.age.min(), df.age.max(), 10)\n", "g = sns.FacetGrid(df, col=\"Gender\", hue=\"loan_status\", palette=\"Set1\", col_wrap=2)\n", "g.map(plt.hist, 'age', bins=bins, ec=\"k\")\n", "\n", "g.axes[-1].legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "# Pre-processing: Feature selection/extraction" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "### Lets look at the day of the week people get the loan " ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGepJREFUeJzt3XmcVPW55/HPV2gvIriC2tIBWkQQldtgR+OCQUh4EdzwuoTEKGTMdTQuYQyDSzImN84YF8YlcSVq8EbEhUTMJTcaVIjgztKCiCFebbEVFJgYYxQFfeaPOt1poKGr6VPU6erv+/WqV1edOud3ntNdTz91fnXq91NEYGZmljU7FDsAMzOzprhAmZlZJrlAmZlZJrlAmZlZJrlAmZlZJrlAmZlZJrlApUTS3pLuk/S6pAWSnpV0ckptD5U0M422tgdJcyRVFzsOK75SygtJ3SU9L2mRpCEF3M+HhWq7rXGBSoEkATOApyJiv4g4FBgDVBQpno7F2K9ZYyWYF8OBVyNiUETMTSMm2zoXqHQMAz6NiNvrF0TEmxHxcwBJHSRdJ+lFSYsl/fdk+dDkbGO6pFclTU2SGkkjk2XzgH+pb1fSzpLuTtpaJOmkZPk4SQ9J+g/gD605GElTJN0maXbyzvfLyT6XSZrSaL3bJM2XtFTSv22hrRHJu+aFSXxdWhObtSklkxeSqoBrgVGSaiTttKXXtqRaSVclz82XNFjSY5L+S9K5yTpdJD2RbLukPt4m9vs/G/1+msyxkhYRvrXyBlwE3LCV588Bfpjc/ydgPlAJDAX+Su4d5Q7As8DRQCfgLaAvIOBBYGay/VXAt5L7uwHLgZ2BcUAdsMcWYpgL1DRx+0oT604B7k/2fRLwAXBIEuMCoCpZb4/kZwdgDjAweTwHqAa6AU8BOyfLLwGuKPbfy7ftcyvBvBgH3Jzc3+JrG6gFzkvu3wAsBroC3YH3kuUdgV0atfUaoOTxh8nPEcDk5Fh3AGYCxxT777o9b+4KKgBJt5BLqE8j4ovkXmgDJZ2arLIruST7FHghIuqS7WqA3sCHwBsR8edk+b3kkpmkrRMlTUgedwJ6JvdnRcT/ayqmiGhpn/l/RERIWgK8GxFLkliWJjHWAKdLOodcspUDA8glY70vJcueTt4A70jun421QyWSF/Wae23/Nvm5BOgSEX8D/iZpnaTdgL8DV0k6Bvgc6AHsDaxq1MaI5LYoedyF3O/nqW2Muc1xgUrHUuCU+gcRcb6kbuTeEULuHdCFEfFY440kDQU+abToM/7xN9nSIIkCTomIP23S1uHkXvRNbyTNJfcublMTIuLxJpbXx/X5JjF+DnSUVAlMAL4YEX9Juv46NRHrrIj4xpbispJWinnReH9be21vNX+AM8idUR0aEesl1dJ0/vw0Iu7YShwlzZ9BpeNJoJOk8xot69zo/mPAeZLKACQdIGnnrbT3KlApqU/yuHESPAZc2KhPflA+AUbEkIioauK2tSTcml3IJf5fJe0NfK2JdZ4DjpK0fxJrZ0kHbOP+rO0p5bxo7Wt7V3LdfeslHQv0amKdx4D/1uizrR6S9mrBPto8F6gURK7DeDTwZUlvSHoBuIdcvzTAncArwEJJLwN3sJWz14hYR67r4nfJh8FvNnr6SqAMWJy0dWXax5OPiHiJXNfDUuBu4Okm1llNrt9+mqTF5JK6/3YM04qolPMihdf2VKBa0nxyZ1OvNrGPPwD3Ac8mXe3Tafpsr2TVfyhnZmaWKT6DMjOzTHKBMjOzTHKBMjOzTHKBMjOzTNquBWrkyJFB7nsMvvlWqrdWc5741g5uedmuBWrNmjXbc3dmbZLzxCzHXXxmZpZJLlBmZpZJLlBmZpZJHizWzErO+vXrqaurY926dcUOpV3r1KkTFRUVlJWVbdP2LlBmVnLq6uro2rUrvXv3Jhk/1raziGDt2rXU1dVRWVm5TW24i8/MSs66devYc889XZyKSBJ77rlnq85iXaCs5PUqL0dSq2+9ysuLfSjWAi5Oxdfav4G7+KzkrVi1irp9K1rdTsU7dSlEY2b58hmUmZW8tM6iW3I23aFDB6qqqjj44IM57bTT+Oijjxqee/jhh5HEq6/+Yxqo2tpaDj74YADmzJnDrrvuyqBBg+jXrx/HHHMMM2fO3Kj9yZMn079/f/r3789hhx3GvHnzGp4bOnQo/fr1o6qqiqqqKqZPn75RTPW32tra1vxaCy6vMyhJ/wP4DrkhKpYA3wbKgfuBPYCFwJkR8WmB4jQz22ZpnUXXy+dseqeddqKmpgaAM844g9tvv52LL74YgGnTpnH00Udz//338+Mf/7jJ7YcMGdJQlGpqahg9ejQ77bQTw4cPZ+bMmdxxxx3MmzePbt26sXDhQkaPHs0LL7zAPvvsA8DUqVOprq7eYkxtQbNnUJJ6ABcB1RFxMNABGANcA9wQEX2BvwBnFzJQM7O2asiQIbz22msAfPjhhzz99NPcdddd3H///XltX1VVxRVXXMHNN98MwDXXXMN1111Ht27dABg8eDBjx47llltuKcwBFEm+XXwdgZ0kdQQ6AyuBYeSmIIbcNM6j0w/PzKxt27BhA7///e855JBDAJgxYwYjR47kgAMOYI899mDhwoV5tTN48OCGLsGlS5dy6KGHbvR8dXU1S5cubXh8xhlnNHTlrV27FoCPP/64YdnJJ5+cxuEVVLNdfBHxtqRJwArgY+APwALg/YjYkKxWB/RoantJ5wDnAPTs2TONmM1KjvOk9NQXA8idQZ19dq6Tadq0aYwfPx6AMWPGMG3aNAYPHtxsexFbHwQ8Ija6aq4UuviaLVCSdgdOAiqB94GHgK81sWqTv72ImAxMBqiurs57mHWz9sR5UnqaKgZr167lySef5OWXX0YSn332GZK49tprm21v0aJFHHjggQAMGDCABQsWMGzYsIbnFy5cyIABA9I9iCLLp4vvK8AbEbE6ItYDvwGOBHZLuvwAKoB3ChSjmVlJmD59OmeddRZvvvkmtbW1vPXWW1RWVm50BV5TFi9ezJVXXsn5558PwMSJE7nkkksauu5qamqYMmUK3/3udwt+DNtTPlfxrQC+JKkzuS6+4cB8YDZwKrkr+cYCjxQqSDOz1ui5zz6pfo+tZ3KlXEtNmzaNSy+9dKNlp5xyCvfddx+XXHLJRsvnzp3LoEGD+Oijj9hrr7342c9+xvDhwwE48cQTefvttznyyCORRNeuXbn33nspL7Evk6u5fk0ASf8GfB3YACwid8l5D/5xmfki4FsR8cnW2qmuro758+e3NmazFpGU2hd188iXVg9f4DxpvWXLljV0h1lxbeFvkVee5PU9qIj4EfCjTRa/DhyWz/ZmZmYt5ZEkzMwsk1ygzMwsk1ygzMwsk1ygzMwsk1ygzMwsk1ygzKzk7VvRM9XpNvatyG84qlWrVjFmzBj69OnDgAEDGDVqFMuXL2fp0qUMGzaMAw44gL59+3LllVc2fIVhypQpXHDBBZu11bt3b9asWbPRsilTptC9e/eNptB45ZVXAFi+fDmjRo1i//3358ADD+T000/ngQceaFivS5cuDVNynHXWWcyZM4fjjz++oe0ZM2YwcOBA+vfvzyGHHMKMGTManhs3bhw9evTgk09y3yxas2YNvXv3btHfJB+esNDMSt7Kt9/i8CseTa29538ystl1IoKTTz6ZsWPHNoxaXlNTw7vvvsu4ceO47bbbGDFiBB999BGnnHIKt956a8NIES3x9a9/vWGU83rr1q3juOOO4/rrr+eEE04AYPbs2XTv3r1h+KWhQ4cyadKkhvH65syZ07D9Sy+9xIQJE5g1axaVlZW88cYbfPWrX2W//fZj4MCBQG5uqbvvvpvzzjuvxTHny2dQZmYFMHv2bMrKyjj33HMbllVVVbF8+XKOOuooRowYAUDnzp25+eabufrqq1Pb93333ccRRxzRUJwAjj322IYJEZszadIkLr/8ciorKwGorKzksssu47rrrmtYZ/z48dxwww1s2LBhS820mguUmVkBvPzyy5tNiQFNT5XRp08fPvzwQz744IMW76dxt11VVRUff/zxFvedr3ym8+jZsydHH300v/rVr7Z5P81xF5+Z2Xa06bQYjW1p+dY01cXXWk3F2NSyyy+/nBNPPJHjjjsu1f3X8xmUmVkBHHTQQSxYsKDJ5ZuOtfj666/TpUsXunbtWtB9t2T7TWNsajqP/fffn6qqKh588MFt3tfWuECZmRXAsGHD+OSTT/jFL37RsOzFF1+kb9++zJs3j8cffxzITWx40UUXMXHixNT2/c1vfpNnnnmG3/3udw3LHn30UZYsWZLX9hMmTOCnP/0ptbW1ANTW1nLVVVfx/e9/f7N1f/CDHzBp0qRU4t6Uu/jMrOSV9/hCXlfetaS95kji4YcfZvz48Vx99dV06tSJ3r17c+ONN/LII49w4YUXcv755/PZZ59x5plnbnRp+ZQpUza6rPu5554DYODAgeywQ+684vTTT2fgwIE88MADG80ndeutt3LkkUcyc+ZMxo8fz/jx4ykrK2PgwIHcdNNNeR1fVVUV11xzDSeccALr16+nrKyMa6+9tmGG4MYOOuggBg8enPfU9S2R13QbafE0AlYMnm6j/fF0G9nRmuk23MVnZmaZlKkC1au8PLVvevcqsZklzczam0x9BrVi1apUumKAVKd3NrO2Z2uXc9v20dqPkDJ1BmVmloZOnTqxdu3aVv+DtG0XEaxdu5ZOnTptcxuZOoMyM0tDRUUFdXV1rF69utihtGudOnWiomLbe8VcoMys5JSVlTWMI2dtl7v4zMwsk1ygzMwsk1ygzMwsk1ygzMwsk1ygzMwsk/IqUJJ2kzRd0quSlkk6QtIekmZJ+nPyc/dCB2tmZu1HvmdQNwGPRkR/4J+BZcClwBMR0Rd4InlsZmaWimYLlKRdgGOAuwAi4tOIeB84CbgnWe0eYHShgjQzs/YnnzOo/YDVwC8lLZJ0p6Sdgb0jYiVA8nOvpjaWdI6k+ZLm+1vdZk1znphtLp8C1REYDNwWEYOAv9OC7ryImBwR1RFR3b17920M06y0OU/MNpdPgaoD6iLi+eTxdHIF611J5QDJz/cKE6KZmbVHzRaoiFgFvCWpX7JoOPAK8FtgbLJsLPBIQSI0M7N2Kd/BYi8EpkraEXgd+Da54vagpLOBFcBphQnRrHXUoSyV+cHUoSyFaMwsX3kVqIioAaqbeGp4uuGYpS8+W8/hVzza6nae/8nIFKIxs3x5JAkzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8skFygzM8ukvAuUpA6SFkmamTyulPS8pD9LekDSjoUL08zM2puWnEF9D1jW6PE1wA0R0Rf4C3B2moGZmVn7lleBklQBHAfcmTwWMAyYnqxyDzC6EAGamVn7lO8Z1I3ARODz5PGewPsRsSF5XAf0aGpDSedImi9p/urVq1sVrFmpcp6Yba7ZAiXpeOC9iFjQeHETq0ZT20fE5Iiojojq7t27b2OYZqXNeWK2uY55rHMUcKKkUUAnYBdyZ1S7SeqYnEVVAO8ULkwzM2tvmj2DiojLIqIiInoDY4AnI+IMYDZwarLaWOCRgkVpZmbtTmu+B3UJcLGk18h9JnVXOiGZmZnl18XXICLmAHOS+68Dh6UfkpmZmUeSMDOzjHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKBMjOzTHKB2o56lZcjKZVbr/LyYh+OmVlBtWg+KGudFatWUbdvRSptVbxTl0o7ZmZZ5TMoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLJBcoMzPLpGYLlKQvSJotaZmkpZK+lyzfQ9IsSX9Ofu5e+HDNzKy9yOcMagPw/Yg4EPgScL6kAcClwBMR0Rd4InlsZmaWimYLVESsjIiFyf2/AcuAHsBJwD3JavcAowsVpJmZtT8t+gxKUm9gEPA8sHdErIRcEQP22sI250iaL2n+6tWrWxetWYlynphtLu8CJakL8GtgfER8kO92ETE5Iqojorp79+7bEqNZyXOemG0urwIlqYxccZoaEb9JFr8rqTx5vhx4rzAhmplZe5TPVXwC7gKWRcT1jZ76LTA2uT8WeCT98MzMrL3KZ8LCo4AzgSWSapJllwNXAw9KOhtYAZxWmBDNzKw9arZARcQ8QFt4eni64ZiZWTH0Ki9nxapVqbTVc599eHPlyla34ynfzcyMFatWUbdvRSptVbxTl0o7HurIMqlXeTmSUrmVorR+P73Ky4t9KGZb5DMoy6QsvpvLkrR+P6X4u7HS4TMoMzPLpJI9g/onSK17J60P/Cx/6lDmd/dm7VzJFqhPwF1EbVh8tp7Dr3g0lbae/8nIVNoxs+3LXXxmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJLlBmZpZJJTvUkZmZ5S/N8S/VoSyVdlygzMwsk+NfuovPrB2rH/Xfkx9aFvkMyqwd86j/lmU+gzIzs0xygbLU7FvRM7XuIjMzd/FZala+/VbmPmQ1s7YrUwUqi5c5mtn216u8nBWrVrW6nZ777MObK1emEJEVQ6YKVBYvc8yq+quv0uAktqxZsWpVKhdv+MKNtq1VBUrSSOAmoANwZ0RcnUpU1ixffWVmpW6bL5KQ1AG4BfgaMAD4hqQBaQVmZtZaWf2eV6/y8lRi6tyhY0lfmNSaM6jDgNci4nUASfcDJwGvpBGYmVlrZbWnIc0uzCweX1oUEdu2oXQqMDIivpM8PhM4PCIu2GS9c4Bzkof9gD9tpdluwJptCqht8PG1bfkc35qIaPEHoC3Mk3xjact8fG1bc8eXV5605gyqqXPCzapdREwGJufVoDQ/IqpbEVOm+fjatkIeX0vypNCxZIGPr21L6/ha80XdOuALjR5XAO+0LhwzM7Oc1hSoF4G+kiol7QiMAX6bTlhmZtbebXMXX0RskHQB8Bi5y8zvjoilrYwn7y6ONsrH17Zl6fiyFEsh+PjatlSOb5svkjAzMyskDxZrZmaZ5AJlZmaZlJkCJWmkpD9Jek3SpcWOJ02SviBptqRlkpZK+l6xY0qbpA6SFkmaWexYCkHSbpKmS3o1+TseUaQ4nCdtXCnnStp5konPoJJhk5YDXyV3+fqLwDcioiRGpZBUDpRHxEJJXYEFwOhSOT4ASRcD1cAuEXF8seNJm6R7gLkRcWdy1WrniHh/O8fgPCkBpZwraedJVs6gGoZNiohPgfphk0pCRKyMiIXJ/b8By4AexY0qPZIqgOOAO4sdSyFI2gU4BrgLICI+3d7FKeE8aeNKOVcKkSdZKVA9gLcaPa6jxF6Y9ST1BgYBzxc3klTdCEwEPi92IAWyH7Aa+GXSNXOnpJ2LEIfzpO0r5VxJPU+yUqDyGjaprZPUBfg1MD4iPih2PGmQdDzwXkQsKHYsBdQRGAzcFhGDgL8Dxfj8x3nShrWDXEk9T7JSoEp+2CRJZeSSbmpE/KbY8aToKOBESbXkupyGSbq3uCGlrg6oi4j6d/PTySViMeJwnrRdpZ4rqedJVgpUSQ+bpNxkK3cByyLi+mLHk6aIuCwiKiKiN7m/25MR8a0ih5WqiFgFvCWpX7JoOMWZVsZ50oaVeq4UIk8yMeV7gYZNypKjgDOBJZJqkmWXR8R/FjEma5kLgalJYXgd+Pb2DsB5Ym1AqnmSicvMzczMNpWVLj4zM7ONuECZmVkmuUCZmVkmuUCZmVkmuUCZmVkmuUBlgKQfS5qQYnv9JdUkw430SavdRu3PkVSddrtmW+M8aX9coErTaOCRiBgUEf9V7GDMMsp5knEuUEUi6QfJvD6PA/2SZf8q6UVJL0n6taTOkrpKeiMZAgZJu0iqlVQmqUrSc5IWS3pY0u6SRgHjge8kc+tMlHRRsu0Nkp5M7g+vH2ZF0ghJz0paKOmhZCw0JB0q6Y+SFkh6LJkOofEx7CDpHkn/e7v94qxdcZ60by5QRSDpUHJDnQwC/gX4YvLUbyLiixHxz+SmGjg7mXZgDrkh+km2+3VErAf+HbgkIgYCS4AfJd+6vx24ISKOBZ4ChiTbVgNdkiQ+GpgrqRvwQ+ArETEYmA9cnKzzc+DUiDgUuBv4P40OoyMwFVgeET9M8ddjBjhPLCNDHbVDQ4CHI+IjAEn146kdnLzL2g3oQm5IG8jNHTMRmEFu6JB/lbQrsFtE/DFZ5x7goSb2tQA4VLkJ4D4BFpJLwCHARcCXgAHA07mh0NgReJbcu9WDgVnJ8g7Aykbt3gE8GBGNk9EsTc6Tds4FqniaGmNqCrkZRF+SNA4YChART0vqLenLQIeIeDlJvOZ3ErFeudGTvw08AywGjgX6kHv32QeYFRHfaLydpEOApRGxpSmbnwGOlfR/I2JdPrGYbQPnSTvmLr7ieAo4WdJOyTu2E5LlXYGVSbfBGZts8+/ANOCXABHxV+Avkuq7Jc4E/kjTngImJD/nAucCNZEbiPE54ChJ+wMk/fkHAH8Cuks6IlleJumgRm3eBfwn8JAkv9GxQnCetHMuUEWQTGv9AFBDbu6buclT/4vcDKKzgFc32WwqsDu55Ks3FrhO0mKgCvjJFnY5FygHno2Id4F19fuMiNXAOGBa0s5zQP9kSvFTgWskvZTEeuQmx3E9ua6QX0nya8lS5Twxj2beRkg6FTgpIs4sdixmWeU8KS0+5WwDJP0c+BowqtixmGWV86T0+AzKzMwyyf2hZmaWSS5QZmaWSS5QZmaWSS5QZmaWSS5QZmaWSf8feZ3K8s9z83MAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df['dayofweek'] = df['effective_date'].dt.dayofweek\n", "bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)\n", "g = sns.FacetGrid(df, col=\"Gender\", hue=\"loan_status\", palette=\"Set1\", col_wrap=2)\n", "g.map(plt.hist, 'dayofweek', bins=bins, ec=\"k\")\n", "g.axes[-1].legend()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "We see that people who get the loan at the end of the week dont pay it off, so lets use Feature binarization to set a threshold values less then day 4 " ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0Unnamed: 0.1loan_statusPrincipaltermseffective_datedue_dateageeducationGenderdayofweekweekend
000PAIDOFF1000302016-09-082016-10-0745High School or Belowmale30
122PAIDOFF1000302016-09-082016-10-0733Bechalorfemale30
233PAIDOFF1000152016-09-082016-09-2227collegemale30
344PAIDOFF1000302016-09-092016-10-0828collegefemale41
466PAIDOFF1000302016-09-092016-10-0829collegemale41
\n", "
" ], "text/plain": [ " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n", "0 0 0 PAIDOFF 1000 30 2016-09-08 \n", "1 2 2 PAIDOFF 1000 30 2016-09-08 \n", "2 3 3 PAIDOFF 1000 15 2016-09-08 \n", "3 4 4 PAIDOFF 1000 30 2016-09-09 \n", "4 6 6 PAIDOFF 1000 30 2016-09-09 \n", "\n", " due_date age education Gender dayofweek weekend \n", "0 2016-10-07 45 High School or Below male 3 0 \n", "1 2016-10-07 33 Bechalor female 3 0 \n", "2 2016-09-22 27 college male 3 0 \n", "3 2016-10-08 28 college female 4 1 \n", "4 2016-10-08 29 college male 4 1 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "## Convert Categorical features to numerical values" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Lets look at gender:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/plain": [ "Gender loan_status\n", "female PAIDOFF 0.865385\n", " COLLECTION 0.134615\n", "male PAIDOFF 0.731293\n", " COLLECTION 0.268707\n", "Name: loan_status, dtype: float64" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "86 % of female pay there loans while only 73 % of males pay there loan\n" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Lets convert male to 0 and female to 1:\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0Unnamed: 0.1loan_statusPrincipaltermseffective_datedue_dateageeducationGenderdayofweekweekend
000PAIDOFF1000302016-09-082016-10-0745High School or Below030
122PAIDOFF1000302016-09-082016-10-0733Bechalor130
233PAIDOFF1000152016-09-082016-09-2227college030
344PAIDOFF1000302016-09-092016-10-0828college141
466PAIDOFF1000302016-09-092016-10-0829college041
\n", "
" ], "text/plain": [ " Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date \\\n", "0 0 0 PAIDOFF 1000 30 2016-09-08 \n", "1 2 2 PAIDOFF 1000 30 2016-09-08 \n", "2 3 3 PAIDOFF 1000 15 2016-09-08 \n", "3 4 4 PAIDOFF 1000 30 2016-09-09 \n", "4 6 6 PAIDOFF 1000 30 2016-09-09 \n", "\n", " due_date age education Gender dayofweek weekend \n", "0 2016-10-07 45 High School or Below 0 3 0 \n", "1 2016-10-07 33 Bechalor 1 3 0 \n", "2 2016-09-22 27 college 0 3 0 \n", "3 2016-10-08 28 college 1 4 1 \n", "4 2016-10-08 29 college 0 4 1 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "## One Hot Encoding \n", "#### How about education?" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/plain": [ "education loan_status\n", "Bechalor PAIDOFF 0.750000\n", " COLLECTION 0.250000\n", "High School or Below PAIDOFF 0.741722\n", " COLLECTION 0.258278\n", "Master or Above COLLECTION 0.500000\n", " PAIDOFF 0.500000\n", "college PAIDOFF 0.765101\n", " COLLECTION 0.234899\n", "Name: loan_status, dtype: float64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.groupby(['education'])['loan_status'].value_counts(normalize=True)" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "#### Feature befor One Hot Encoding" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PrincipaltermsageGendereducation
0100030450High School or Below
1100030331Bechalor
2100015270college
3100030281college
4100030290college
\n", "
" ], "text/plain": [ " Principal terms age Gender education\n", "0 1000 30 45 0 High School or Below\n", "1 1000 30 33 1 Bechalor\n", "2 1000 15 27 0 college\n", "3 1000 30 28 1 college\n", "4 1000 30 29 0 college" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['Principal','terms','age','Gender','education']].head()" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "#### Use one hot encoding technique to conver categorical varables to binary variables and append them to the feature Data Frame " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PrincipaltermsageGenderweekendBechalorHigh School or Belowcollege
01000304500010
11000303310100
21000152700001
31000302811001
41000302901001
\n", "
" ], "text/plain": [ " Principal terms age Gender weekend Bechalor High School or Below \\\n", "0 1000 30 45 0 0 0 1 \n", "1 1000 30 33 1 0 1 0 \n", "2 1000 15 27 0 0 0 0 \n", "3 1000 30 28 1 1 0 0 \n", "4 1000 30 29 0 1 0 0 \n", "\n", " college \n", "0 0 \n", "1 0 \n", "2 1 \n", "3 1 \n", "4 1 " ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Feature = df[['Principal','terms','age','Gender','weekend']]\n", "Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)\n", "Feature.drop(['Master or Above'], axis = 1,inplace=True)\n", "Feature.head()\n" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "### Feature selection" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Lets defind feature sets, X:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PrincipaltermsageGenderweekendBechalorHigh School or Belowcollege
01000304500010
11000303310100
21000152700001
31000302811001
41000302901001
\n", "
" ], "text/plain": [ " Principal terms age Gender weekend Bechalor High School or Below \\\n", "0 1000 30 45 0 0 0 1 \n", "1 1000 30 33 1 0 1 0 \n", "2 1000 15 27 0 0 0 0 \n", "3 1000 30 28 1 1 0 0 \n", "4 1000 30 29 0 1 0 0 \n", "\n", " college \n", "0 0 \n", "1 0 \n", "2 1 \n", "3 1 \n", "4 1 " ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = Feature\n", "X[0:5]" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "What are our lables?" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/plain": [ "array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF'], dtype=object)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = df['loan_status'].values\n", "y[0:5]" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "## Normalize Data " ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Data Standardization give data zero mean and unit variance (technically should be done after train test split )" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.51578458, 0.92071769, 2.33152555, -0.42056004, -1.20577805,\n", " -0.38170062, 1.13639374, -0.86968108],\n", " [ 0.51578458, 0.92071769, 0.34170148, 2.37778177, -1.20577805,\n", " 2.61985426, -0.87997669, -0.86968108],\n", " [ 0.51578458, -0.95911111, -0.65321055, -0.42056004, -1.20577805,\n", " -0.38170062, -0.87997669, 1.14984679],\n", " [ 0.51578458, 0.92071769, -0.48739188, 2.37778177, 0.82934003,\n", " -0.38170062, -0.87997669, 1.14984679],\n", " [ 0.51578458, 0.92071769, -0.3215732 , -0.42056004, 0.82934003,\n", " -0.38170062, -0.87997669, 1.14984679]])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X= preprocessing.StandardScaler().fit(X).transform(X)\n", "X[0:5]" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "# Classification " ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "Now, it is your turn, use the training set to build an accurate model. Then use the test set to report the accuracy of the model\n", "You should use the following algorithm:\n", "- K Nearest Neighbor(KNN)\n", "- Decision Tree\n", "- Support Vector Machine\n", "- Logistic Regression\n", "\n", "\n", "\n", "__ Notice:__ \n", "- You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to make a better model.\n", "- You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.\n", "- You should include the code of the algorithm in the following cells." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# K Nearest Neighbor(KNN)\n", "Notice: You should find the best k to build the model with the best accuracy. \n", "**warning:** You should not use the __loan_test.csv__ for finding the best k, however, you can split your train_loan.csv into train and test to find the best __k__." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Decision Tree" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Support Vector Machine" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Logistic Regression" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Model Evaluation using Test set" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import jaccard_similarity_score\n", "from sklearn.metrics import f1_score\n", "from sklearn.metrics import log_loss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, download and load the test set:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!wget -O loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "### Load Test set for evaluation " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "button": false, "collapsed": true, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "outputs": [], "source": [ "test_df = pd.read_csv('loan_test.csv')\n", "test_df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Report\n", "You should be able to report the accuracy of the built model using different evaluation metrics:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "| Algorithm | Jaccard | F1-score | LogLoss |\n", "|--------------------|---------|----------|---------|\n", "| KNN | ? | ? | NA |\n", "| Decision Tree | ? | ? | NA |\n", "| SVM | ? | ? | NA |\n", "| LogisticRegression | ? | ? | ? |" ] }, { "cell_type": "markdown", "metadata": { "button": false, "deletable": true, "new_sheet": false, "run_control": { "read_only": false } }, "source": [ "

Want to learn more?

\n", "\n", "IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler\n", "\n", "Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio\n", "\n", "

Thanks for completing this lesson!

\n", "\n", "

Author: Saeed Aghabozorgi

\n", "

Saeed Aghabozorgi, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients’ ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.

\n", "\n", "
\n", "\n", "

Copyright © 2018 Cognitive Class. This notebook and its source code are released under the terms of the MIT License.

" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }